

LA-UR-21-30669

Approved for public release; distribution is unlimited.

Title: White Source n-gamma Coincidence Measurements of gamma-Production

Cross Sections at LANSCE

Author(s): Kelly, Keegan John

Devlin, Matthew James O'Donnell, John M. Paris, Mark W.

Bennett, Eames Alexander

Intended for: Kickoff Meeting for NA-22-Funded Project

Issued: 2021-10-26

White Source n- γ Coincidence Measurements of γ -Production Cross Sections at LANSCE

Kickoff Meeting Team Presentation

Keegan J. Kelly Matthew J. Devlin, John M. O'Donnell, Mark Paris, and Eames Bennett

Outline

- Team Introductions
- Technical Presentation
 - Motivation
 - Other methods
 - Proposed method
 - Proof of Concept
 - Timeline and milestones
- Other items to discuss
 - LCP
 - TRL
 - Leveraging of existing technology
 - Reporting and Communications

Project Team Introductions

- Keegan Kelly, PI
 - Heavily involved in prompt fission neutron spectrum (PFNS) measurements at WNR FP15L at LANSCE with the Chi-Nu experiment
 - PI of LDRD-ECR and ER projects to investigate and develop neutron scattering measurement techniques
- Matthew Devlin, Co-I
 - PI of Chi-Nu experiment
 - GEANIE measurements of inelastic scattering and (n,2n) reactions
- John O'Donnell, Co-I
 - Heavily involved in Chi-Nu PFNS measurement and analysis
 - Wrote and developed the Universal Analysis Code (UAC) used for analysis of data from Chi-Nu and neutron scattering data
- Mark Paris, Co-I
 - World-leading expert in evaluation of light-ion nuclear data evaluations
 - Evaluation results are fed directly into the potential ENDF/B libraries
 - Eames Bennett, PD
 - Experience in Chi-Nu and neutron scattering measurement and analysis
 - One of the POCs for LDRD-funded neutron scattering analysis

Project Motivation: Active Interrogation

• *n*-Irradiate sample of interest

• Observe emitted γ spectrum

- γ -ray production is the common item of interest
- Inelastic n scattering cross sections are frequently the strongest contributors to γ -production cross sections
- Effectively no information on the correlated n- γ distributions
 - Not sufficient to just understand the scattering cross sections
- n transport is equally important for understanding the results

Measure correlated n- γ data to extract γ -emitting inelastic neutron scattering cross sections on 27 Al, 28 Si, and 16 O

Most of the γ -prod XS is in (n,n')

- γ -only measurements typically have poor E_n^{inc} resolution
- n-only measurements get cross section only (no γ info)
- Dual n- γ measurements are needed for cross section, γ production, and neutron transport
- Sensitive to all n- γ producing reactions

The LANSCE Facility: Pulsed White n Source

Properties of the Liquid Scintillator Array

- Span $\theta = 30-150^{\circ}$ at 15° increments
- Six angles in ϕ , \approx 10% of 4π
- PSD for n- γ separation
- ≈1 ns time resolution
- Allows for mapping of n- γ dist.

Properties of the Liquid Scintillator Array

Demonstration Measurement: Natural Carbon

- Use t_{γ} - t_0 to get E_n^{inc}
- Use t_n - t_{γ} to get E_n^{out}
- Observe γ-coincident neutrons, with target and random coincidence backgrounds

Random Coincidence Backgrounds Eliminated

- Random coincidence rates derived form Poisson probabilities for uncorrelated detection rates †
 - true coincidence rate must be low
- Calculate the total probability for:
 - 1. Detecting a γ at time t_{γ}
 - 2. Not detecting n over coinc. time $t_n t_\gamma$
 - 3. Detecting n at time t_n

Coinc. Rate
$$= r_b = r_\gamma r_n \Delta_t$$

$$\Rightarrow b = \frac{\gamma n}{N_{t_0}}$$
 with $\gamma, n = \text{counts}$

 Works remarkably well here, but what are the backgrounds?

Backgrounds from γ -Anticoincident Neutrons

- The elastic scattering $^{12}C(n,n)$ reaction is a likely source
- Do a simple Monte Carlo calculation for this background:
 - Sample incident neutrons from WNR FP15L flux shape
 - Calculate E_n^{out} from sample E_n^{inc} , convert to TOFs
 - Vary TOFs according to random γ timing, recover new $E_n^{inc'}$ and $E_n^{out'}$
 - Fill histogram with counts = $\sigma(E_n^{inc})$
- Possible to extract cross sections from this background?...maybe...

MCNP Simulations of Carbon Data

- Chi-Nu experiment analysis relied heavily on MCNP simulations
- MCNP can guide n- γ detector efficiencies
- Number of internal scatters can be investigated
- Understanding neutron interactions with the environment is important

Extract n, γ , and Correlated n- γ Distributions

Corr. n- γ Distributions for Wide Range of E_n^{inc}

Laboratory n-Detection Angle, θ_n (deg) Laboratory γ -Detection Angle, θ_{γ} (deg)

Goal and Expected Al Yield

- Use γ -coincident n yields to extract γ -production cross sections
- Initially assume level decay branching ratios from each excited state
- Can be used to cross check data γ -anticoincident data, and n-only MCNP simulations

And now for a couple of interesting analysis details that we hope to exploit for the analysis of these data LA-UR-21-XXXXX

Obtain 2D n Efficiency from 12 C $(n,n'_1\gamma)$

- Typical treatments of detection efficiency work poorly for neutrons
- Need complete description of n interactions with exp. environment
 - Especially for smooth distributions (e.g., high level density scattering)
- This was handled with MCNP for Chi-Nu PFNS measurements
- Could be more accurately done with measurements

Iterative Unfolding to Isolate Excited States

$$\text{From last week: } m_{\alpha|\beta}^{(n+1)}(E) = \frac{m_{\alpha|\beta}^{(n)}(E)c_{\alpha}(E)}{\sum_{i=1}^{N}\mathcal{R}(E,E_{i})m_{\alpha|\beta}^{(n)}(E_{i})}$$

- Clearer view of states in data
- Informs treatment of n response
 - Clarifies expected γ rays
- Confirms inelastic state populations

Sensitive to All n- γ Producing Reactions

- Fe levels are reasonably dense
- The liquid scint. time resolution allows for ⁵⁶Fe low-lying state separation
- Natural Pt shows inelastic scattering, (n,2n), and (n,3n)reactions, with separation
- Elastic scattering data also exist from these measurements
 - Potential for correlated measurements of these different cross sections

Project Timeline

- Proposed milestones are repetitive for each proposed target:
 - Obtain data from each target near start of each FY
 - Analyze data during same FY as measurement
 - Work towards publication near end of FY and start of next FY
 - Include data in evaluation as they are available (typically before
- Potential for final meas. to use only CLYC detectors may arise

Other Items to Discuss

- LCP, deliverables, work scope, and milestones
 - Discussion of acceptance criteria for milestones?
- Leveraging existing and developing detection and sample setups, as well as analysis techniques developed under LDRD funding
- Team consists
 - 3 more senior staff members (Co-l's)
 - 1 early career scientist (PI)
 - 1 postdoc
- Technical Readiness Level (TRL)
 - Starting: 8/10, system demo, nearing complete analysis path
 - Ending: 10/10, system complete and in production use
- Reporting requirements
- Constraints (beamtime availability)
- Risks and opportunities
- Communications plan and possible stakeholders

